If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9r^2+35r-50=0
a = 9; b = 35; c = -50;
Δ = b2-4ac
Δ = 352-4·9·(-50)
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-55}{2*9}=\frac{-90}{18} =-5 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+55}{2*9}=\frac{20}{18} =1+1/9 $
| a(5.2+6.3)-1=2 | | 4(.5x+2)=x+4+x+4 | | -38=0.4b | | –6g=–5g+10 | | x=200000-05.x | | -4(5y-5)-y=2(y-2) | | 30x/5+30/2=70x/10 | | 3x+18=x+24 | | 8/3=5/12n | | x+2(x+20)=160 | | 2(4x+11)^2-162=0 | | (6x+9)−(7x+1)=0 | | 6x=2x-(-4) | | x−62,500=(125,000) | | 0.4(x-2)=0.5x+6-2+1.9x | | 7j−j=18 | | 9(2(-3)+3)+2=11(-3-y) | | x=200000+05.x | | 3x-28=3x+10=180,x | | 10+3a=-6a-8 | | 3x+10=3x-28=180,x | | 3t^2-11t=4 | | | | 7x+9=5x+3=180,x | | 5^(3x-1)=125 | | 2/3x-8/15=1/9x+2 | | 12x-18=8x+10=180,x | | 40h+20= | | (1/4)^(2x+1)=16 | | (1/4)^2x+1=16 | | –12=–4(r−13) | | 4.8/6=24/n |